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ABSTRACT
Data is becoming increasingly geo-distributed due to the introduc-

tion of a variety of data-locality regulation [1, 2]. This introduces

many new challenges for analytics systems. In this work we focus

on the significantly increased cost of data movement over a Wide

Area Network (WAN). The resulting network bottleneck hinders the

performance and cost of classic shuffle-based distributed join algo-

rithms. We address this problem by designing a novel data-driven

shuffle execution protocol, which utilizes fine-grained statistics

over subsets of the data to locally eliminate rows from the shuffle

partitions. Our experiments in simulation demonstrate the benefit

of a data-driven shuffle execution procedure over a variety of real

and synthetic workloads.
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• Networks→ Network services; • Computing methodologies
→ Distributed computing methodologies.
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1 INTRODUCTION
Over the past two decades, companies have been collecting an

increasing amount of data at the edge. Because of the resulting

increase in personal data collection, nations are beginning to adopt

regulations surrounding such data. For instance, India requires that

data for any transaction involving at least one Indian party be stored

in India. These developments have motivated organizations to have

their data distributed in datacenters across the world. However,

this introduces many new challenges for data analytics systems.

We focus in particular on the challenges introduced by the network

setup. In particular, since an analytics query may now be submitted

in a location distinct from the storage location of the data, data
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must now be moved over a WAN. This is in contrast to a classic

datacenter architecture, where data and compute reside close to

each other. In the datacenter setting, data may be transmitted over

a homogeneous high bandwidth, low-latency network. However,

a WAN induces a heterogeneous network structure between the

compute and data nodes, with (time- and space-) varying bandwidth

and latencies.

The geo-distributed setting motivates many questions, such as

(1) where to place jobs (i.e. the tasks in a query) and data, (2) how to

move (intermediate) data among the tasks of a distributed query

[5, 9], and (3) how to perform the computation underlying a job.

Many recent works have attempted to address these questions

by, for instance, computing optimal job execution schedules, and

adding network considerations to the query optimizer for join

ordering [8]. They have also explored data and job placement [6]

in order to minimize data movement.

In this work, we focus on question (2) which has received rela-

tively less attention. To exemplify the challenges and opportunities,

we consider how to efficiently execute distributed joins over a

heterogeneous network with potentially low throughput commu-

nication channels. Low-throughput WAN channels can severely

impact the performance of all-to-all shuffles utilized by distributed

join algorithms. Thus, minimizing the amount of data sent over the

network is of utmost importance in this setting.

Most classic distributed join algorithms are simple adaptations

of algorithms designed for a single server to a networked setting.

In particular, they adopt a shared-nothing execution structure by

partitioning data across executors based on the join key, and then

locally joining them. Our key observation is that only rows from a

subset of the join keys will be a part of the final join output. Thus,

rows belonging to the extraneous set of join keys need not be sent

over the network in the first place! We refer to this approach as

being "data-driven" because it is aware of the properties of the

input and intermediate data involved in the execution. While prior

work [5] has attempted to address this, their solutions (1) involve

broadcasting all distinct join keys, and (2) are designed assuming a

homogeneous network. (1) is infeasible in the WAN setting since

the number of keys can be of the same order of magnitude as the

number of rows, whereas (2) is an unrealistic assumption.

Motivated by this, we design a procedure which (1) eliminates

data from being sent over the network by collecting information

about the data, and (2) factors in the network when deciding what

information to collect. We carefully trade-off network transfers

for local compute. Thus, our solution uses a hybrid approach by

combining network-friendly coarse-grained statistics with fine-

grained information such as join keys by computing the latter only

on certain subsets of the dataset.

https://doi.org/10.1145/3530050.3532922
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Suppose we are joining tables 𝐴 and 𝐵. For a node 𝑁𝑖 , each node

𝑁 𝑗 first computes some statistics over the partition of its data for

𝑁𝑖 , and sends it to 𝑁𝑖 . Then, 𝑁𝑖 may decide to “zoom in” on some

subset of the key-space by requesting finer-grained statistics over

the subset from all the nodes. After repeating this for some number

of rounds, 𝑁𝑖 utilizes the collected information to infer predicates

Φ𝐴 and Φ𝐵 , such that each 𝑁 𝑗 will only send the subset of rows

from table 𝐴 (resp. 𝐵) of 𝑁𝑖 ’s partition which satisfy Φ𝐴 (resp. Φ𝐵 ).

We carefully design heuristics to decide which subset of the data to

zoom-in on, to decide what statistic to compute given the network

conditions, as well as the number of rounds of interaction.

In summary our work makes the following contributions:

• We present a novel data-driven protocol which reduces the

number of rows sent over a network during the execution

of analytics queries by utilizing run-time information about

the materialized partitions.

• We present the first such protocol which accounts for nature

ofWide-Area networks such as heterogeneity and potentially

low bandwidth that commonly constrain the performance

of wide-area geo-distributed analytics.

We first present some motivating examples for our setting (sec-

tion 2). Then, we present our main technique (section 3). We then

show results for experiments (Figure 5) that demonstrate the ef-

fectiveness of our proposed system. Finally, we conclude with a

discussion of related work (section 6) and potential future directions

(section 7).

2 MOTIVATING EXAMPLE
Businesses are increasingly storing their data in stores spread across

the world, for instance, to comply with data-locality laws. However,

this introduces multiple challenges for data analytics. Consider the

query SELECT * FROM A JOIN B ON A.x = B.x AND A.y =
B.y. Performing the join may require an all-to-all shuffle between

nodes placed in the USA, EU, and Asia. Even over a 1Gbps connec-

tion, transferring 1 TB of data can take over 2 hours. Moreover,

it also costs a lot of money (∼ $90 / TB) since services like AWS

charge per GB transferred out of the data center. Thus, it is of the

utmost importance to aggresively reduce the amount of data being

transferred over the network.

Now, consider the partitions for the node placed in the USA.

Suppose the columns x and y respectively satisfy the statistics in

Table 1. Given access to these statistics, we observe that it is indeed

not necessary to send all the rows in a partition for a reducer!

In Table 1a we observe we need only send rows satisfying 𝑥 ∈
[70, 100]. Similarly, in Table 1b only rows satisfying 𝑦 ∈ [10, 30] ∪
[40, 50] need to be sent. Moreover, the second constraint clearly

eliminates 40% of rows in the partition, reducing time spent on

network transfer by nearly half! Hence, we observe that developing

a system which is able to utilize run-time statistics and properties

of the data can significantly reduce the amount of data transferred

over the network. Thus, the fundamental guiding observation for

our system is that locally computing statistics and sending small

summaries is significantly cheaper than sending huge volumes of

data.

We note that there are multiple interesting choices to be made by

such a system. For instance, the system must decide what statistics

A.x B.x
max 100 150

min 30 70

(a) Statistics for column
x of the tables

A.y B.y
0 − 10 40% 0%

10-20 5% 35%

20-30 35% 5%

30-40 0% 40%

40-50 13% 13%

(b) Histogram statistics
for column y of the ta-
bles

A.y B.y
0 − 10 40% 0%

10-20 5% 35%

20-25 0% 5%

25-30 35% 0%

30-40 0% 40%

40-50 13% 13%

(c) Histogram statistics for column
y of the tables

Table 1: Run-time table statistics for motivating example

to compute, and what granularity to compute at. If the min and

max for the table partitions are the same, then we get no benefit.

Hence, the system may choose to compute a histogram. However,

depending on the granularity of the histogram there may not be a

lot of disjoint buckets (see Table 1c), so the system may decide to

compute a finer grained histogram. Thus, the system must tradeoff

the time, resources, and data-size assosciated with finer-grained

statistics against the benefit.

3 DATA-DRIVEN SHUFFLE
3.1 Overview of Protocol
We now present our system for performing geo-distributed analyt-

ics. As developed in section 2, the goal is to locally filter out rows

before they are sent over the network for a shuffle. In order to do

this, we orchestrate an interactive protocol between the producers

and consumers. After partitioning the data a producer 𝑃𝑖 will for

each consumer 𝐶 𝑗 where 𝑖 ∈ [𝑃], 𝑗 ∈ [𝐶] compute some statistic

S𝐴
𝑖,𝑗

over the partition of table 𝐴 𝑗 assigned to 𝐶 𝑗 for each table

𝐴 being joined. Each consumer receives such statistics from all

producers.

A consumer 𝐶 𝑗 will then combine the statistics S𝐴
𝑖,𝑗

for all 𝑖 to

get S𝐴
𝑗
(i.e., statistic over the partition of 𝐴 for 𝐶 𝑗 ). S𝐴𝑗 and S𝐵

𝑗
are

added to 𝐶 𝑗 ’s “knowledge sets” H𝐴
𝑗
and H𝐵

𝑗
respectively. Then,

based onH𝐴
𝑗
andH𝐵

𝑗
, 𝐶 𝑗 will request the producers {𝑃𝑖 }𝑖∈[𝑃 ] to

compute some new statistics {S𝐴
𝑖
}𝑖∈𝐼 ∪ {S𝐵𝑖 }𝑖∈𝐼 ′ . We refer to this

step as “zooming”, as intuitively the consumer should try to zoom in

on a subset of the data it thinks has the most potential to eliminate

rows (see Table 1b, Table 1c). After some 𝑟 rounds, 𝐶 𝑗 generates

predicates Φ𝐴
𝑗
,Φ𝐵

𝑗
using H𝐴

𝑗
,H𝐵

𝑗
and the operation 𝜑 (say, inner

join). Each producer then filters out the rows in 𝐶 𝑗 ’s partitions of
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𝐴, 𝐵 which don’t satisfy Φ𝐴
𝑗
,Φ𝐵

𝑗
respectively. Finally, these filtered

partitions are sent over the network for the shuffle.

3.2 Statistics Instantiations
In picking the statistics for our protocol, we consider both the

(1) efficiency of computing the statistic, and (2) the data cost of

materializing and transferring the statistic. In order to satisfy (1), a

key design choice we make is to focus on statistics which do not

require co-ordination between producers to be computed. That is,

each producer can locally compute the statistic S on their partition

𝐴𝑖 , and then the consumer can recover the statistic over all of

the data by simply combining the local results of each producer.

Formally, if 𝐴 =
⋃

𝑖∈𝐼 𝐴𝑖 , then for statistic S there must exist an

assosciative operator ◦ such that

S (𝐴1 ∪𝐴2 ∪ · · · ∪𝐴𝑖 ) = S(𝐴1) ◦ S(𝐴2) ◦ · · · ◦ S(𝐴𝑖 )

We refer to such statistics as “homomorphic statistics”. With respect

to (2), we observe that generally, the more fine-grained information

a statistic provides, the more space it consumes. For instance, the en-

tire set of distinct values for a column is far larger than a histogram

over these values with, say, 10 bins (eg: in the TPC-DS benchmark,

at the 1GB scale, there are tables with ∼ 2 million rows, and equal

number of distinct join keys). Hence, we consider 3 different types

of statistics, each of varying granularity and thus size.

(1) DistinctKeys(col): the distinct values in a column col
(2) Histogram(col, 𝑛): a histogram over the values of column

col with 𝑛 bins.

(3) RangeStats(col): range statistics such as min, max, avg.

etc for a column col.

We note that all three statistics can be represented using histograms

as the underlying representation, as the distribution of distinct-keys

is a full-resolution histogram. Thus, the “knowledge sets”H𝐴,H𝐵

are implemented as the consumer’s current histogram of the re-

spective table. While it would be ideal to always be able to compute

DistinctKeys, the number of distinct values can be of the order of

the number of rows, which is prohibitively large. Thus, typically

protocols will compute it over some subset of the data. Protocols

may use coarser statistics such as histograms to determine these

subsets. For instance, for the same histogram bin, table𝐴 has signif-

icantly more rows than 𝐵. Further suppose the number of distinct

keys in the bin for both tables is not large. Then, a protocol would

want to get the distinct keys restricted to rows in this bin, and com-

pute the difference. To facilitate protocols like this, each statistic

above also takes an optional parameter Φ, and then computes the

same statistic over only the rows which satisfy Φ.

3.3 Predicate Instantiations
We consider a relatively simple space of predicates. In general, the

space is determined by the inferences that can be made by the

statistics considered. In our setting, histograms typically induce

constraints of the form col ∈ ⋃𝑖 [𝑎𝑖 , 𝑏𝑖 ], while the set of distinct
keys may induce constraints like col ∈ 𝐾1 ∩ 𝐾2, where 𝐾1, 𝐾2 are
sets of keys. We formally describe our predicate space in Figure 1.

The goal then is to use the statistics to infer some Ψ such that its

“projections” 𝜋𝐴 (Ψ), 𝜋𝐵 (Ψ) are the strongest such. That is, for any
other Ψ′, 𝜋𝐴 (Ψ) =⇒ 𝜋𝐴 (Ψ′) and similarly for 𝐵. Note here that

Predicate. Π ::= 𝜋 | Π ∧ Π | Π ∨ Π | ¬Π
Atomic Predicate. 𝜋 ::= 𝑒 ◦ 𝑒 | 𝑒 ∈ 𝜎

Compare Op. ◦ ::= > | ≥ | < | ≤ | = | ≠
Expr. 𝑒 ::= col | 𝑒 + 𝑒 | 𝑒 − 𝑒 | 𝑒 · 𝑒 | 𝑒/𝑒 | 𝑐
Set. 𝜎 ::= range(𝑒, 𝑒) | list(𝑒1, . . . , 𝑒𝑘 )

Const. 𝑐

Figure 1: Grammar of Predicate Space

𝜋𝐴 (Ψ) is the strongest formula implied by Ψ such that the only

columns it depends on are that of 𝐴 (𝜋𝐵 defined similarly). We

believe there is interesting work to be done in chosing the space

of statistics, predicates, and inference algorithms. However, for

purposes of simplicity, we leave considering more sophisticated

constructions of these to future work.

3.4 Zooming Procedure

Algorithm 1: constrain(𝜑𝐴,𝐵 , {(S𝑖𝐴,S
𝑖
𝐵
)}𝑖∈[𝑀 ] )

H𝐴,H𝐵 ← combine({S𝑖
𝐴
}𝑖∈[𝑀 ]), combine({S𝑖𝐵}𝑖∈[𝑀 ]) ;

foreach 𝑟 ∈ ZOOM_ROUNDS do
R ← statisticsRequests (H𝐴,H𝐵 ) ;

H𝐴,H𝐵 ← updateStats (R) ;
Φ𝐴,Φ𝐵 ← generatePredicate (H𝐴,H𝐵 ) ;

return Φ𝐴,Φ𝐵

Algorithm 2: statisticsReqests(H𝐴,H𝐵 )

R ← ∅ ;
S𝐴,S𝐵 ← 𝐹 (H𝐴), 𝐹 (H𝐵) ;
B ← argmax

𝑘
(
{𝜌𝐴 (𝑏)}𝑏∈S𝐴 ∪ {𝜌𝐵 (𝑏)}𝑏∈S𝐵

)
;

foreach 𝑏 ∈ B do
if width(𝑏) < Δ then
R ←
R ∪ {DistinctKeys(𝐴,𝑏), DistinctKeys(𝐵,𝑏)};

else
R ← R ∪ {Histogram(𝐴,𝑏, 𝜂), Histogram(𝐵,𝑏, 𝜂)};

return R

We are now ready to describe the key part of our technique.

We will focus on Algorithm 2 and Algorithm 3. As mentioned in

subsection 3.1 the goal is to “zoom in” and compute fine-grained

statistics for appropriate subsets of the data in the form of an in-

teractive protocol. algorithm 2 decides what statistics to request

in each round. In order to identify subsets of the join-key space

where there is disparity between the two tables, it utilizes a ranking

function 𝜌 over the bins of the histogram.

𝜌𝐴 (𝑏𝐴) =
∑︁

𝑥 ∈𝑋𝑏𝐴

𝑥 − |𝑏𝐴 |

𝑋𝑏𝐴 = {|𝑏 | | 𝑏 ∈ S𝐵, 𝑏 ∩ 𝑏𝐴 ≠ ∅}
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Algorithm 3: generatePredicate(H𝐴,H𝐵 )

Φ𝐴,Φ𝐵 ← ⊤,⊤ ;

foreach 𝑏𝐴 ∈ H𝐴 do
B ← {𝑏 ∈ H𝐵 | 𝑏 ∩ 𝑏𝐴 ≠ ∅} ;
if

∑
𝑏∈B |𝑏 | = 0 then
Φ𝐴 ← Φ𝐴 ∧ 𝑐 ∉ 𝑏𝐴

foreach 𝑏𝐵 ∈ H𝐵 do
B ← {𝑏 ∈ H𝐴 | 𝑏 ∩ 𝑏𝐵 ≠ ∅} ;
if

∑
𝑏∈B |𝑏 | = 0 then
Φ𝐵 ← Φ𝐵 ∧ 𝑐 ∉ 𝑏𝐵

return Φ𝐴,Φ𝐵

Observe that 𝜌 identifies bins where one table has significantly

more rows than the other. Thus, (1) it is likely there are disjoint

portions of the keyspace, and (2) the number of rows eliminated is

potentially high with respect to the size of the statistic. algorithm 2

then computes the top-𝑘 bins across the tables according to this

ranking in B where 𝑘 is a parameter. We zoom-in on several bins

at once in order to optimize the information gained per round of

the protocol, since there is inherent network latency. Note that

when ranking, we exclude any bin that has been queried before,

and bins of width 1. Crucially, we also exclude bins that we can

already infer as being disjoint in the current round. This prevents

gathering redundant information. This filtering is representing in

algorithm 2 by 𝐹 (H𝐴), 𝐹 (H𝐵) respectively. Then, for each bin we

compute the finest-grained statistic possible. In particular, if the

maximum number of distinct keys (measured as bin-width) is below

a threshold Δ we simply retrieve them. Otherwise, we fall back to

a histogram over the bin with 𝜂 bins.
1
The consumer then sends

the requests R to the producers, and updates its knowledge sets

H𝐴,H𝐵 with their response. After repeating this procedure for a

certain number of rounds, the consumer prepares its predicates Φ𝐴
and Φ𝐵 using algorithm 3.

The goal is to generate a predicate which eliminates any join

keys which we know certainly will not be contained in the join

output. We do this by identifying bins in each histogram which

are disjoint with the other table’s histogram. Note, as mentioned

in subsection 3.2 information about distinct-keys is embedded as

width-1 bins in the histogram, since the distribution of distinct keys

is simply a full-resolution histogram.

4 IMPLEMENTATION
4.1 Simulator
In order to evaluate our technique, we built a simulator in about

1, 500 lines of Scala. In our simulator, we assume there is a set of

producers {𝑃𝑖 }𝑖∈P where P is the set of producer IDs, and {𝐶𝑖 }𝑖∈C
where C is the set of consumer IDs. Each producer has a mapping

M : C → T from consumer IDs to a “table” representing the parti-

tion for that consumer. Each table has a DataFrame-like API; we

concretely instantiated it as an in-memory dataset for simplicity,

with code-generation support for filtering rows. We additionally

1Δ and 𝜂 are also parameters.

simulate a network for sending and receiving messages. The simula-

tor executes in real-time, but logs the messages sent by all producers

and consumers. We use this log in order to analyze the performance

of the protocol after execution.

While we required statistics have no co-ordination, for simplicity

we add a single extra bootstrapping round for the first round of his-

tograms. In particular, in order to facilitate merging of histograms,

we first receive RangeStats from each producer for each table,

which is used to define the range for the histogram requests. This en-

sures the bins of the received histograms are well-aligned, and thus

mergeable. Additionally, in the simulator we restricted our atten-

tion to inner equi-joins over one column. We handle multi-column

joins by introducing a column which is the Murmur3 hash of the

join columns. Observe that this generates weaker predicates, since

due to hash collisions, equality over the hash is necessary but not

sufficient for a row to be a part of the join output. In subsection 3.4

we left Δ, 𝜂 and ZOOM_ROUNDS as parameters. For our imple-

mentation, we picked 𝜂 = 10,Δ = 1000, and ZOOM_ROUNDS as

2 · log
10
𝑤 where𝑤 is the difference of the maximum and minimum

join keys across both tables. Intuitively, after O
(
log

10
𝑤
)
rounds,

we should have zoomed in completely on some subset of the initial

10 bins, since we subdivide at least one bin into 10 each time by

zooming.

4.2 Real Implementation Considerations
4.2.1 Overall Design Choices. Implementing this technique in a

real system requires making additional design choices. In a single-

tenant, single-job setting, the producer/consumer can simply idle

while waiting for a response, and use all available memory for

cacheing intermediate data whilst idling. However, this is substan-

tiallymore intricate in themulti-tennant setting. In particular, nodes

cannot simply block/idle while waiting for a response in order to

have efficient resource utilization. Moreover, nodes must now make

choice about what intermediate data to cache, store on disk, or even

recompute on demand.

4.2.2 Efficiently Computing Statistics. A key part of our protocol is

the “zooming” procedure wherein the consumer may request finer-

grained statistics over a subset of the data. Efficiently computing

these requests in each round also introduces non-trivial tradeoffs.

For instance, one could simply pre-compute a histogram where

each bin has width 1, and then simply coalesce bins according to

the number of requested bins. This has the benefit of only requiring

a single pass over the dataset, and subsequent queries also only

require simple operations. However, as the number of distinct keys

can be large the this histogram may itself be extremely large. Thus,

storing it becomes a non-trivial concern. The other end of the

spectrum involves computing the statistic on-demand with no pre-

computation. While storage efficient, this requires several passes

over the data which can be very expensive. It may be possible to

achieve efficient computation with a manageable storage overhead

by, for instance, building an index that supports range queries (such

as a B-tree) over the join key.

4.2.3 Network-Aware Aggregation of Statistics. Currently, our pro-
tocol as described follows an all-to-one strategy when it comes to

the consumer combining the statistics of the producers. i.e., all the
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producers send their statistics to the consumer, which then locally

combines them. However, since we are in a setting with a heteroge-

neous network environment, we believe routing this aggregation

intelligently is an interesting question. In particular, observe that

if the merging operator ◦ from subsection 3.2 is commutative and

associative, then a producer can send their statistic to a neighboring

producer. This neighboring producer then merges its statistic with

the sending producers’, and routes it similarly, eventually being

sent to the consumer. The key observation here is that the merging

operator ◦ has a sub-additive output size in the case of statistics like

histograms. Thus if a neighboring producer has a higher throughput

connection to the consumer, less data is sent over low throughput

connections.

5 EVALUATION
We evaluate our technique over synthetic and real benchmarks

towards answering the following research questions:

• (RQ1) Can we meaningfully reduce the number of tuples

transferred over the network?

• (RQ2) Is there a meaningful reduction in the amount of data

sent over the network, including overhead?

5.1 Benchmark Setup
5.1.1 Synthetic Workloads. We examine on synthetic data to study

a simple setting in which the underlying distributions are well un-

derstood, and hence evaluate our technique over it. In particular,

we generate the workloads by randomly sampling from distribu-

tions which are mixtures of Gaussians over the integers. We sample

the number of rows from N(105, 104) and N(2 × 104, 500) for the
left and right table respectively, from a mixture of 5 Gaussians

N(𝜇, 𝜎) with 𝜇, 𝜎 sampled uniformly at random from [0, 10, 000]
and [0, 1000] respectively. We ignore generation of columns which

are not being joined.

5.1.2 Real Workload. In addition to the synthetic data, we also

evaluate on queries from the standard TPC-DS benchmark. To

generate the input data for our simulator, for each query in the

benchmarkwe first invoke Apache Spark’s Catalyst query optimizer

[3] and then pick the first join in the tree. Then, we materialize the

left, and right children of this join, and provide that as input to the

simulator. We currently only support inner equi-joins. We handle

multi-column equi-joins by introducing a new column which is the

Murmur3 hash of the involved columns.

5.2 Results
5.2.1 Synthetic workload. We run our simulator on 100 instances,

with 1 consumer, and 2 producers and 𝑘 = 1,Δ = 500. While the

number of consumers can be increased, that is simply equivalent to

multiple runs of an instance with 1 consumer, thus we omit it for

clarity. In order to answer (RQ1) we examine the results shown in

Figure 2c and Figure 2d. In particular, observe for approximately 40%

of instances, we observe an at least 40% decrease in the number of

rows sent. Additionally, we compare against the optimal number of

rows. We compute this optimum as the sum of the number of rows

from both tables which will be included in the final join. Observe

from Figure 2d that for 80% of instances, we send at most 1.7× the

optimum number of rows. For 40% of instances, at most 1.3× the
optimum. For (RQ2) observe Figure 2b and Figure 2a. Observe that

for ∼ 40% of instances, the overhead incurred from exchanging

statistics for the protocol is 20× smaller than the size of the tuples

which don’t have to be transferred (assuming 4 byte tuples). For 20%

of instances, it is ∼ 30× smaller. Furthermore, in order to compare

our overhead to that of simply sending all distinct keys, we examine

Figure 2b and see that for 60% of instances, the overhead of our

protocol is 5× smaller (and yet, we are close to the optimal number

of rows).

5.2.2 TPC-DS workload. We run out simulator with 1 consumer,

and 2 producers Δ = 1, 000 and 𝑘 = 3. We evaluate over the subset

of queries whose simulation terminated within a combined budget

of 1 hour. Of those queries 24.6% had a lower overhead than sending

all keys. This, however, can be improved by appropriately tuning 𝑘

and Δ. Of the queries that had a lower overhead, for 40% of them

the overhead was > 5× smaller than sending all keys, and for 60%

it was > 2.5× smaller. For 67% of these queries, we exactly match

the optimal number of rows. A key challenge with utilizing data-

driven techniques for TPC-DS is the uniform distribution of the

join keys. Furthermore, we were only able to evaluate on a 1GB

scale instance of TPC-DS. However, we believe with appropriate

choice of parameters, data-driven shuffles will provide a significant

performance benefit. In addition, an evaluation on a larger-scale

instance of TPC-DS would also be helpful in understanding the

benefit.

5.2.3 Discussion. We have demonstrated the significant perfor-

mance benefit of data-driven shuffles over both synthetic, and stan-

dard benchmarks. However, as observed in the TPC-DS evaluation,

the technique does not always provide a benefit. Indeed, in a non-

trivial fraction of cases the overhead is large. As is the case for join

algorithms, a query optimizer would decide whether or not to use

such a shuffle in place of a standard one. Building such a query

optimizer is in itself an interesting problem, however, we leave it

to future work.

6 RELATEDWORK
Recently, there has been a line of works addressing the various chal-

lenges introduced by geo-distributed analytics in both the batch,

and streaming settings. WANalytics [9] operates in the batch set-

ting, and reduces the amount of data transferred over the network

suing clever caching and query execution techniques. Their tech-

niques are complementary to ours. Iridium [6] manages data, and

job placement in an online fashion in order to minimize data move-

ment over the network. Clarinet [8] introduces a WAN-aware

query optimizer that considers the network parameters when de-

ciding, for instance, the join order. In addition, they optimize query

execution schedules across queries since they share the same WAN-

links for data transfer. Additional work has considered the chal-

lenges of GDA in the streaming setting [4, 7, 10]

The “Track Join” [5] algorithm is most closely related to our

work. They also attempt to “track” the join keys, and utilize this

to optimize data movement. However, their tracking procedure

involves broadcasting the set of distinct join keys over the network,

which can be prohibitively expensive.Moreover, their work assumes
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Figure 2: (a-d) synthetic, (e-h) TPC-DS, (a, e) CDF of ratio of the number of bytes saved, and overhead from messages (b, f) CDF
of ratio of our overhead from messages, and sending all the distinct keys (c, g) CDF of ratio of percentage reduction in number
of rows sent (d,h) CDF of ratio of number of rows sent, and the lowest possible

a homogeneous network. Our work builds upon this by generalizing

both the tracking phase, and adapting to a heterogeneous network.

7 FUTURE DIRECTIONS
We believe there are a lot of interesting questions remaining in the

sphere of geo-distributed data analytics, across query planning, ex-

ecution, placement, data movement etc. Some particular directions

we think are interesting include:

(1) Extending Statistics and Predicates: Extending the space of

statistics with structures such as Bloom Filters, and corre-

spondingly expanding the space of predicates that can be

inferred will directly allow filtering out more data.

(2) Consumer-Side statistics: In order to eliminate the data over-

head introduced by transferring statistics over the network,

it may be interesting to explore techniques where the statis-

tics are computed on the consumer-side, while the producer

sends data as usual.

(3) Communication-efficient Partitioned Set Intersection: Being
able to compute the intersection of two sets 𝐴, 𝐵 where 𝐴 =⋃

𝑖∈𝐼𝐴 𝐴𝑖 and 𝐵 =
⋃

𝑖∈𝐼𝐵 𝐵𝑖 where the 𝐴𝑖 , 𝐵𝑖 are distributed
across nodes in a communication-efficient manner would

allow us to compute the intersection of the join keys and thus

appropriately filter out the rows. We believe studying this

problem both in the setting of (1) an approximate relaxation,

where only a superset of the intersection is required, and (2)

a heterogeneous network-aware communication complexity

metric, in a principled fashion is interesting and can lead to

practical improvements in distributed join execution.
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