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ABSTRACT

As gradual typing becomes increasingly popular in languages like Python and
TypeScript, there is a growing need to infer type annotations automatically. While
type annotations help with tasks like code completion and static error catching,
these annotations cannot be fully determined by compilers and are tedious to an-
notate by hand. This paper proposes a probabilistic type inference scheme for
TypeScript based on a graph neural network. Our approach first uses lightweight
source code analysis to generate a program abstraction called a type dependency
graph, which links type variables with logical constraints as well as name and
usage information. Given this program abstraction, we then use a graph neural
network to propagate information between related type variables and eventually
make type predictions. Our neural architecture can predict both standard types,
like number or string, as well as user-defined types that have not been en-
countered during training. Our experimental results show that our approach out-
performs prior work in this space by 14% (absolute) on library types, while having
the ability to make type predictions that are out of scope for existing techniques.

1 INTRODUCTION

Dynamically typed languages like Python, Ruby, and Javascript have gained enormous popularity
over the last decade, yet their lack of a static type system comes with certain disadvantages in terms
of maintainability (Hanenberg et al., 2013), the ability to catch errors at compile time, and code
completion support (Gao et al., 2017). Gradual typing can address these shortcomings: program
variables have optional type annotations so that the type system can perform static type checking
whenever possible (Siek & Taha, 2007; Chung et al., 2018). Support for gradual typing now exists in
many popular programming languages (Bierman et al., 2014; Vitousek et al., 2014), but due to their
heavy use of dynamic language constructs and the absence of principal types (Ancona & Zucca,
2004), compilers cannot perform type inference using standard algorithms from the programming
languages community (Bierman et al., 2014; Traytel et al., 2011; Pierce & Turner, 2000), and man-
ually adding type annotations to existing codebases is a tedious and error-prone task. As a result,
legacy programs in these languages do not reap all the benefits of gradual typing.

To reduce the human effort involved in transitioning from untyped to statically typed code, this
work focuses on a learning-based approach to automatically inferring likely type annotations for un-
typed (or partially typed) codebases. Specifically, we target TypeScript, a gradually-typed variant of
Javascript for which plenty of training data is available in terms of type-annotated programs. While
there has been some prior work on inferring type annotations for TypeScript using machine learning
(Hellendoorn et al., 2018; Raychev et al., 2015), prior work in this space has several shortcomings.
First, inference is restricted to a finite dictionary of types that have been observed during train-
ing time—i.e., they cannot predict any user-defined data types. Second, even without considering
user-defined types, the accuracy of these systems is relatively low, with the current state-of-the-
art achieving 56.9% accuracy for primitive/library types (Hellendoorn et al., 2018). Finally, these
techniques can produce inconsistent results in that they may predict different types for different
token-level occurrences of the same variable.
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1 class MyNetwork {
2 name: string; time: number;
3 forward(x: Tensor, y: Tensor): Tensor {
4 return x.concat(y) * 2;
5 }
6 }
7 // more classes ...
8 function restore (network: MyNetwork): void {
9 network.time = readNumber("time.txt");

10 // more code...
11 }

Figure 1: A motivating example: Given an unannotated version of this TypeScript program, a
traditional rule-based type inference algorithm cannot soundly deduce the true type annotations
(shown in green).

In this paper, we propose a new probabilistic type inference algorithm for TypeScript to address these
shortcomings using a graph neural network architecture (GNN) (Veličković et al., 2018; Li et al.,
2016; Mou et al., 2016). Our method uses lightweight source code analysis to transform the program
into a new representation called a type dependency graph, where nodes represent type variables and
labeled hyperedges encode relationships between them. In addition to expressing logical constraints
(e.g., subtyping relations) as in traditional type inference, a type dependency graph also incorporates
contextual hints involving naming and variable usage.

Given such a type dependency graph, our approach uses a GNN to compute a vector embedding
for each type variable and then performs type prediction using a pointer-network-like architec-
ture (Vinyals et al., 2015). The graph neural network itself requires handling a variety of hyper-
edge types—some with variable numbers of arguments—for which we define appropriate graph
propagation operators. Our prediction layer compares the vector embedding of a type variable with
vector representations of candidate types, allowing us to flexibly handle user-defined types that have
not been observed during training. Moreover, our model predicts consistent type assignments by
construction because it makes variable-level rather than token-level predictions.

We implemented our new architecture as a tool called LAMBDANET and evaluated its performance
on real-world TypeScript projects from Github. When only predicting library types, LAMBDANET
has a top1 accuracy of 75.6%, achieving a significant improvement over DeepTyper (61.5%). In
terms of overall accuracy (including user-defined types), LAMBDANET achieves a top1 accuracy of
around 64.2%, which is 55.2% (absolute) higher than the TypeScript compiler.

Contributions. This paper makes the following contributions: (1) We propose a probabilistic type
inference algorithm for TypeScript that uses deep learning to make predictions from the type de-
pendency graph representation of the program. (2) We describe a technique for computing vector
embeddings of type variables using GNNs and propose a pointer-network-like method to predict
user-defined types. (3) We experimentally evaluate our approach on hundreds of real-world Type-
Script projects and show that our method significantly improves upon prior work.

2 MOTIVATING EXAMPLE AND PROBLEM SETTING

Figure 1 shows a (type-annotated) TypeScript program. Our goal in this work is to infer the types
shown in the figure, given an unannotated version of this code. We now justify various aspects of
our solution using this example.

Typing constraints. The use of certain functions/operators in Figure 1 imposes hard constraints on
the types that can be assigned to program variables. For example, in the forward function, vari-
ables x, y must be assigned a type that supports a concat operation; hence, x, y could have types
like string, array, or Tensor, but not, for example, boolean. This observation motivates us
to incorporate typing constraints into our model.

Contextual hints. Typing constraints are not always sufficient for determining the intended type
of a variable. For example, for variable network in function restore, the typing constraints
require network’s type to be a class with a field called time, but there can be many classes that
have such an attribute (e.g., Date). However, the similarity between the variable name network
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1 var c1: τ8 = class MyNetwork {
2 name: τ1; time: τ2;
3 var m1: τ9 = function forward(x: τ3, y: τ4):τ5 {
4 var v1: τ10 = x.concat; var v2: τ11 = v1(y);
5 var v3: τ12 = v2.TIMES_OP; var v4: τ13 = v3(NUMBER);
6 return v4;
7 }
8 } // more classes...
9 var f1:τ14 = function restore (network: τ6): τ7 {

10 var v3: τ15 = network.time;
11 var v4: τ16 = readNumber(STRING);
12 network.time = v4; // more code...
13 }

Figure 2: An intermediate representation of the (unannotated version) program from Figure 1. The
τi represent type variables, among which τ8–τ16 are newly introduced for intermediate expressions.

Figure 3: Example hyperedges for Figure 2. Edge labels in gray (resp. red) are positional arguments
(resp. identifiers). (A) The return statement at line 6 induces a subtype relationship between τ13
and τ5. (B) MyNetwork τ8 declares attributes name τ1 and time τ2 and method forward τ9.
(C) τ14 is associated with a variable whose named is restore. (D) Usage hyperedge for line 10
connects τ6 and τ15 to all classes with a time attribute.

and the class name MyNetwork hints that network might have type MyNetwork. Based on this
belief, we can further propagate the return type of the library function readNumber (assuming we
know it is number) to infer that the type of the time field in MyNetwork is likely to be number.

Need for type dependency graph. There are many ways to view programs—e.g., as token se-
quences, abstract syntax trees, control flow graphs, etc. However, none of these representations is
particularly helpful for inferring the most likely type annotations. Thus, our method uses static anal-
ysis to infer a set of predicates that are relevant to the type inference problem and represents these
predicates using a program abstraction called the type dependency graph.

Handling user-defined types. As mentioned in Section 1, prior techniques can only predict types
seen during training. However, the code from Figure 1 defines its own class called MyNetwork and
later uses a variables of type MyNetwork in the restore method. A successful model for this
task therefore must dynamically make inferences about user-defined types based on their definitions.

2.1 PROBLEM SETTING

Our goal is to train a type inference model that can take as input an entirely (or partially) unannotated
TypeScript project g and output a probability distribution of types for each missing annotation.
The prediction space is Y(g) = Ylib ∪ Yuser(g), where Yuser(g) is the set of all user-defined types
(classes/interfaces) declared within g, and Ylib is a fixed set of commonly-used library types.

Following prior work in this space (Hellendoorn et al., 2018; Raychev et al., 2015; Xu et al.,
2016), we limit the scope of our prediction to non-polymorphic and non-function types. That
is, we do not distinguish between types such as List<T>, List<number>, List<string>
etc., and consider them all to be of type List. Similarly, we also collapse function types like
number→ string and string→ string into a single type called Function. We leave the
extension of predicting structured types as future work.
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Table 1: Different types of hyperedges used in a type dependency graph.

Type Edge Description
Logical

FIXED Bool(α) α is used as boolean
FIXED Subtype(α, β) α is a subtype of β
FIXED Assign(α, β)† β is assigned to α
NARY Function(α, β1, . . . , βk, β∗) α = (β1, . . . , βk) → β∗

NARY Call(α, β∗, β1, . . . , βk) α = β∗(β1, . . . , βk)
NARY Objectl1,...,lk (α, β1, . . . , βk) α = {l1 : β1, . . . , lk : βk}
FIXED Accessl(α, β) α = β.l

Contextual
FIXED Namel(α) α has name l
FIXED NameSimilar(α, β) α, β have similar names
NPAIRS Usagel((α

∗, β∗), (α1, β1), . . . , (αk, βk)) usages involving name l
† Although assignment is a special case of a subtype constraint, we differentiate them
because these edges appear in different contexts and having uncoupled parameters for
these two edge types is beneficial.

3 TYPE DEPENDENCY GRAPH

A type dependency graph G = (N,E) is a hypergraph where nodes N represent type variables and
labeled hyperedges E encode relationships between them. We extract the type dependency graph of
a given TypeScript program by performing static analysis on an intermediate representation of its
source code, which allows us to associate a unique variable with each program sub-expression. As
an illustration, Figure 2 shows the intermediate representation of the code from Figure 1.

Intuitively, a type dependency graph encodes properties of type variables as well as relationships
between them. Each hyperedge corresponds to one of the predicates shown in Table 1. We partition
our predicates (i.e., hyperedges) into two classes, namely Logical and Contextual, where the for-
mer category can be viewed as imposing hard constraints on type variables and the latter category
encodes useful hints extracted from names of variables, functions, and classes.

Figure 3 shows some of the hyperedges in the type dependency graph G extracted from the in-
termediate representation in Figure 2. As shown in Figure 3(A), our analysis extracts a predicate
Subtype(τ13, τ5) from this code because the type variable associated with the returned expression
v4 must be a subtype of the enclosing function’s return type. Similarly, as shown in Figure 3(B), our
analysis extracts a predicate Objectname,time,forward(τ8, τ1, τ2, τ9) because τ8 is an object type whose
name, time, and forward members are associated with type variables τ1, τ2, τ9, respectively.

In contrast to the Subtype and Object predicates that impose hard constraints on type variables,
the next two hyperedges shown in Figure 3 encode contextual clues obtained from variable names.
Figure 3(C) indicates that type variable τ14 is associated with an expression named restore.
While this kind of naming information is invisible to TypeScript’s structural type system (?), it
serves as a useful input feature for our GNN architecture described in Section 4.

In addition to storing the unique variable name associated with each type variable, the type depen-
dency graph also encodes similarity between variable and class names. The names of many program
variables mimic their types: for example, instances of a class called MyNetwork might often be
called network or network1. To capture this correspondence, our type dependency graph also
contains a hyperedge called NameSimilar that connects type variables α and β if their corresponding
tokenized names have a non-empty intersection.1

As shown in Table 1, there is a final type of hyperedge called Usage that facilitates type inference
of object types. In particular, if there is an object access var y = x.l, we extract the predicate
Usagel((τx, τy), (α1, β1), . . . , (αk, βk)) to connect x and y’s type variables with all classes αi that
contain an attribute/method βi whose name is l. Figure 3 shows a Usage hyperedge extracted from
the code in Figure 2. As we will see in the next section, our GNN architecture utilizes a special
attention mechanism to pass information along these usage edges.

1During tokenization, we split identifier names into tokens based on underscores and camel case naming.
More complex schemes are possible, but we found this simple method to be effective.
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4 NEURAL ARCHITECTURE

Our neural architecture for making type predictions consists of two main parts. First, a graph neural
network passes information along the type dependency graph to produce a vector-valued embedding
for each type variable based on its neighbors. Second, a pointer network compares each variable’s
type embedding to the embedding vectors of candidate types (both computed from the previous
phase) to place a distribution over possible type assignments.

Given a type dependency graph G = (N,E), we first to compute a vector embedding vn for each
n ∈ N such that these vectors implicitly encode type information. Because our program abstraction
is a graph, a natural choice is to use a graph neural network architecture. From a high level, this
architecture takes in initial vectors v0

n for each node n, performs K rounds of message-passing in
the graph neural network, and returns the final representation for each type variable.

In more detail, let vtn denote the vector representation of node n at the tth step, where each round
consists of a message passing and an aggregation step. The message passing step computes a vector-
valued update to send to the jth argument of each hyper-edge e ∈ E connecting nodes p1, . . . , pa.
Then, once all the messages have been computed, the aggregation step computes a new embedding
vtn for each n by combining all messages sent to n:

mt
e,pj = Msge,j(v

t−1
p1 , . . . ,vt−1

pa ) vtn = Aggr(vt−1
n , {mt

e,n|e ∈ N (n)})

Here, N is the neighborhood function, and Msge denotes a particular neural operation that depends
on the type of the edge (FIXED, NARY, or NPAIRS), which we will describe later.

Initialization. In our GNN, nodes correspond to type variables and each type variable is associ-
ated either with a program variable or a constant. We refer to nodes representing constants (resp.
variables) as constant (resp. variable) nodes, and our initialization procedure works differently de-
pending on whether or not n is a constant node. Since the types of each constant are known, we
set the initial embedding for each constant node of type τ (e.g., string) to be a trainable vector
cτ and do not update it during GNN iterations (i.e., ∀t,vtn = cτ ). On the other hand, if n is a
variable node, then we have no information about its type during initialization; hence, we initialize
all variable nodes using a generic trainable initial vector (i.e., they are initialized to the same vector
but updated to different values during GNN iterations).

Message passing. Our Msg operator depends on the category of edge it corresponds to (see Ta-
ble 1); however, weights are shared between all instances of the same hyperedge type. In what
follows, we describe the neural layer that is used to compute messages for each type of hyperedge:

• FIXED: Since these edges correspond to fixed arity predicates (and the position of each argument
matters), we compute the message of the jth argument by first concatenating the embedding vector
of all arguments and then feed the result vector to a 2-layer MLP for the jth argument. In addition,
since hyperedges of type Access have an identifier, we also embed the identifier as a vector and
treat it as an extra argument. (We describe the details of identifier embedding later in this section.)

• NARY: Since NARY edges connect a variable number of nodes, we need an architecture that can
deal with this challenge. In our current implementation of LAMBDANET, we use a simple archi-
tecture that is amenable to batching. Specifically, given an NARY edge El1,...,lk(α, β1, . . . , βk)
(for Function and Call, the labels lj are argument positions), the set of messages for α is computed
as {MLPα(vlj ‖vβj ) | j = 1 . . . k}, and the message for each βj is computed as MLPβ(vlj ‖vα).
Observe that we compute k different messages for α, and the message for each βj only depends
on the vector embedding of α and its position j, but not the vector embeddings of other βj’s.2

• NPAIRS: This is a special category associated with Usagel((α
∗, β∗), (α1, β1), . . . , (αk, βk)). Re-

call that this kind of edge arises from expressions of the form b = a.l and is used to connect a and
b’s type variables with all classes αi that contain an attribute/method βi with label l. Intuitively, if
a’s type embedding is very similar to a type C, then b’s type will likely be the same as C.l’s type.
Following this reasoning, we use dot-product based attention to compute the messages for α∗ and
β∗. Specifically, we use α∗ and αj’s as attention keys and βj’s as attention values to compute the

2In our current implementation, this is reducible to multiple FIXED edges. However, NARY edges could
generally use more complex pooling over their arguments to send more sophisticated messages.
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message for β∗ (and switch the key-value roles to compute the message for α∗):

mt
e,β∗ =

∑
j

wjv
t−1
βj

w = softmax(a) aj = vαj
· vα∗

Aggregation. Recall that the aggregation step combines all messages sent to node n to compute
the new embedding vtn. To achieve this goal, we use a variant of the attention-based aggregation
operator proposed in graph attention networks (Veličković et al., 2018).

vtn = Aggr(vt−1
n , {mt

e,n|e ∈ N (n)}) = vt−1
n +

∑
e∈N (n)

weM1m
t
e,n (1)

where we is the attention weight for the message coming from edge e. Specifically, the weights
we are computed as softmax(a), where ae = LeakyReLu(vt−1

n ·M2m
t
e,n) , and M1 and M2 are

trainable matrices. Similar to the original GAT architecture, we set the slope of the LeakyReLu to
be 0.2, but we use dot-product to compute the attention weights instead of a linear model.

Identifier embedding. Like in Allamanis et al. (2017), we break variable names into word tokens
according to camel case and underscore rules and assign a trainable vector for all word tokens that
appear more than once in the training set. For all other tokens, unlike Allamanis et al. (2017),
which maps them all into one single <Unknown> token, we randomly mapped them into one of the
<Unknown-i> tokens, where i ranges from 0 to 50 in our current implementation. This mapping is
randomly constructed every time we run the GNN and hence helps our neural networks to distinguish
different tokens even if they are rare tokens. We train these identifier embeddings end-to-end along
with the rest of our architecture.

Prediction Layer. For each type variable n and each candidate type c ∈ Y(g), we use a MLP
to compute a compatibility score sn,c = MLP(vn,uc), where uc is the embedding vector for c.
If c ∈ Ylib, vc is a trainable vector for each library type c; if c ∈ Yuser(g), then it corresponds to
a node nc in the type dependency graph of g, so we just use the embedding vector for nc and set
uc = vnc . Formally, this approach looks like a pointer network (Vinyals et al., 2015), where we use
the embeddings computed during the forward pass to predict “pointers” to those types.

Given these compatibility scores, we apply a softmax layer to turn them into a probability distribu-
tion. i.e., Pn(c|g) = exp(sn,c)/

∑
c′ exp(sn,c′). During test time, we max over the probabilities to

compute the most likely (or top-N) type assignments.

5 EVALUATION

In this section, we describe the results of our experimental evaluation, which is designed to answer
the following questions: (1) How does our approach compare to previous work? (2) How well can
our model predict user-defined types? (3) How useful is each of our model’s components?

Dataset. Similar to Hellendoorn et al. (2018), we train and evaluate our model on popular open-
source TypeScript projects taken from Github. Specifically, we collect 300 popular TypeScript
projects from Github that contain between 500 to 10, 000 lines of code and where at least 10%
of type annotations are user-defined types. Note that each project typically contains hundreds to
thousands of type variables to predict, and these projects in total contain about 1.2 million lines
of TypeScript code. Among these 300 projects, we use 60 for testing, 40 for validation, and the
remainder for training.

Code Duplication. We ran jscpd3 on our entire data set and found that only 2.7% of the code
is duplicated. Furthermore, most of these duplicates are intra-project. Thus, we believe that code
duplication is not a severe problem in our dataset.

Preprocessing. Because some of the projects in our benchmark suite are only sparsely type an-
notated, we augment our labeled training data by using the forward type inference functionality
provided by the TypeScript compiler.4 The compiler cannot infer the type of every variable and
leaves many labeled as any during failed inference; thus, we exclude any labels in our data set.

3A popular code duplication detection tool, available at https://github.com/kucherenko/jscpd.
4Like in many modern programming languages with forward type inference (e.g., Scala, C#, Swift), a

TypeScript programmer does not need to annotate every definition in order to fully specify the types of a
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Furthermore, at test time, we evaluate our technique only on annotations that are manually added by
developers. This is the same methodology used by Hellendoorn et al. (2018), and, since develop-
ers often add annotations where code is most unclear, this constitutes a challenging setting for type
prediction.

Prediction Space. As mentioned in Section 2.1, our approach takes an entire TypeScript project
g as its input, and the corresponding type prediction space is Y(g) = Ylib ∪ Yuser(g). In our ex-
periments, we set Yuser(g) to be all classes/interfaces defined in g (except when comparing with
DeepTyper, where we set Yuser(g) to be empty), and for Ylib, we select the top-100 most common
types in our training set. Note that this covers 98% (resp. 97.5%) of the non-any annotations for
the training (resp. test) set.

Hyperparameters We selected hyperparameters by tuning on a validation set as we were develop-
ing our model. We use 32-dimensional type embedding vectors, and all MLP transformations in our
model use one hidden layer of 32 units, except the MLP for computing scores in the prediction layer,
which uses three hidden layers of sizes 32,16, and 8 (and size 1 for output). GNN message-passing
layers from different time steps have independent weights.

We train our model using Adam (Kingma & Ba, 2014) with default parameters (α = 0.9, β = 0.999)
and set the learning rate to be 10−3 initially but linearly decrease it to 10−4 until the 30th epoch.
We use a weight decay of 10−4 for regularization and stop the training once the loss on validation
set starts to increase (which usually happens around 30 epochs). We use the type annotations from a
single project as a minibatch and limit the maximal batch size (via downsampling) to be the median
of our training set to prevent any single project from having too much influence.

Implementation Details. We implemented LAMBDANET in Scala, building on top of the Java
high-performance Tensor library Nd4j(nd4), and used a custom automatic differentiation library to
implement our GNN. Our GNN implementation does not use an adjacency matrix to represent GNN
layers; instead, we build the hyperedge connections directly from our type dependency graph and
perform batching when computing the messages for all hyperedges of the same type.

Code Repository. We have made our code publicly available on Github.5

5.1 COMPARISON WITH DEEPTYPER

In this experiment, we compare LAMBDANET’s performance with DeepTyper (Hellendoorn et al.,
2018), which treats programs as sequences of tokens and uses a bidirectional RNN to make type pre-
dictions. Since DeepTyper can only predict types from a fixed vocabulary, we fix both LAMBDANET
and DeepTyper’s prediction space to Ylib and measure their corresponding top-1 accuracy.

The original DeepTyper model makes predictions for each variable occurrence rather than decla-
ration. In order to conduct a meaningful comparison between DeepTyper and LAMBDANET, we
implemented a variant of DeepTyper that makes a single prediction for each variable (by averaging
over the RNN internal states of all occurrences of the same variable before making the prediction).
Moreover, for a fair comparison, we made sure both DeepTyper and LAMBDANET are using the
same improved naming feature that splits words into tokens.

Our main results are summarized below, where the Declaration (resp. Occurrence) column shows ac-
curacy per variable declaration (resp. token-level occurrence). Note that we obtain occurrence-level
accuracy from declaration-level accuracy by weighting each variable by its number of occurrences.

Model Top1 Accuracy (%)
Declaration Occurrence

DeepTyper 61.5 67.4
LAMBDANETlib (K=6) 75.6 77.0

program. Instead, they only need to annotate some key places (e.g., function parameters and return types, class
members) and let the forward inference algorithm to figure out the rest of the types. Therefore, in our training
set, we can keep the user annotations on these key places and run the TS compiler to recover these implicitly
specified types as additional labels.

5See https://github.com/MrVPlusOne/LambdaNet.
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Table 2: Accuracy when predicting all types.

Model Top1 Accuracy (%) Top5 Accuracy (%)
Yuser Ylib Overall Yuser Ylib Overall

TS COMPILER 2.66 14.39 8.98 - - -
SIMILARNAME 24.1 0.78 15.7 42.5 3.19 28.4
LAMBDANET (K=6) 53.4 66.9 64.2 77.7 86.2 84.5

Table 3: Performance of different GNN iterations (left) and ablations (right).

K Top1 Accuracy (%)
Yuser Ylib Overall

6 53.4 66.9 64.2
4 48.4 65.5 62.0
2 47.3 61.7 58.8
1 16.8 48.2 41.9
0 0.0 17.0 13.6

Ablation Top1 Accuracy (%)
(K = 4) Yuser Ylib Overall

LAMBDANET 48.4 65.5 62.0
No Attention in NPAIR 44.1 57.6 54.9
No Contextual 27.2 52.6 47.5
No Logical∗ 24.7 39.2 36.2
Simple Aggregation 40.2 66.9 61.5
∗ Training was unstable and experienced gradient explosion.

As we can see from the table, LAMBDANET achieves significantly better results compared to Deep-
Typer. In particular, LAMBDANET outperforms DeepTyper by 14.1% (absolute) for declaration-
level accuracy and by 9.6% for occurrence-level accuracy.

Note that the accuracy we report for DeepTyper (67.4%) is not directly comparable to the original
accuracy reported in Hellendoorn et al. (2018) (56.9%) for the following reasons. While we perform
static analysis and have a strict distinction of library vs. user-defined types and only evaluate both
tools on library type annotations in this experiment, their implementation treat types as tokens and
does not have this distinctions. Hence, their model also considers a much larger prediction space
consisting of many user-defined types—most of which are never used outside of the project in which
they are defined—and is also evaluated on a different set of annotations than ours.

5.2 PREDICTING USER-DEFINED TYPES

As mentioned earlier, our approach differs from prior work in that it is capable of predicting user-
defined types; thus, in our second experiment, we extend LAMBDANET’s prediction space to also
include user-defined types. However, since such types are not in the prediction space of prior
work (Hellendoorn et al., 2018), we implemented two simpler baselines that can be used to cali-
brate our model’s performance. Our first baseline is the type inference performed by the TypeScript
compiler, which is sound but incomplete (i.e., if it infers a type, it is guaranteed to be correct, but
it infers type any for most variables).6 Our second baseline, called SIMILARNAME, is inspired by
the similarity between variable names and their corresponding types; it predicts the type of each
variable v to be the type whose name shares the most number of common word tokens with v.

The results of this experiment are shown in Table 2, which shows the top-1 and top-5 accuracy
for both user-defined and library types individually as well as overall accuracy. In terms of overall
prediction accuracy, LAMBDANET achieves 64.2% for top-1 and 84.5% for top-5, significantly out-
performing both baselines. Our results suggest that our fusion of logical and contextual information
to predict types is far more effective than rule-based incorporation of these in isolation.

5.3 ABLATION STUDY

Table 3 shows the results of an ablation study in which (a) we vary the number of message-passing
iterations (left) and (b) disable various features of our architecture design (right). As we can see
from the left table, accuracy continues to improve as we increase the number of message passing
iterations as high as 6; this gain indicates that our network learns to perform inference over long
distances. The right table shows the impact of several of our design choices on the overall result.

6For inferring types from the TypeScript compiler, we use the code provided by Hellendoorn et al. (2018).
We found this method had a slightly lower accuracy than reported in their work.
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For example, if we do not use Contextual edges (resp. Logical edges), overall accuracy drops by
14.5% (resp. 25.8%). These drops indicate that both kinds of predicates are crucial for achieving
good accuracy. We also see that the attention layer for NPAIR makes a significant difference for
both library and user-defined types. Finally, Simple Aggregation is a variant of LAMBDANET that
uses a simpler aggregation operation which replaces the attention-based weighed sum in Eq 1 with
a simple average. As indicated by the last row of Table 3 (right), attention-based aggregation makes
a substantial difference for user-defined types.

5.4 COMPARISON WITH JSNICE

Since JSNice (Raychev et al., 2015) cannot properly handle class definitions and user-defined types,
for a meaningful comparison, we compared both tools’ performance on top-level functions randomly
sampled from our test set. We filtered out functions whose parameters are not library types and man-
ually ensured that all all the dependency definitions are also included. In this way, we constructed
a small benchmark suite consisting of 41 functions. Among the 107 function parameter and return
type annotations, LAMBDANET correctly predicted 77 of them, while JSNice only got 48 of them
right. These results suggest that LAMBDANET outperforms JSNice, even when evaluated only on
the places where JSNice is applicable.

6 RELATED WORK

Type Inference using Statistical Methods. There are several previous works on predicting likely
type annotations for dynamically typed languages: Raychev et al. (2015) and Xu et al. (2016) use
structured inference models for Javascript and Python, but their approaches do not take advantage
of deep learning and are limited to a very restricted prediction space. Hellendoorn et al. (2018)
and Jangda & Anand (2019) model programs as sequences and AST trees and apply deep learning
models (RRNs and Tree-RNNs) for TypeScript and Python programs. Malik et al. (2019) make use
of a different source of information and take documentation strings as part of their input. However,
all these previous works are limited to predicting types from a fixed vocabulary.

Graph Embedding of Programs. Allamanis et al. (2017) are the first to use GNNs to obtain deep
embedding of programs, but they focus on predicting variable names and misuses for C] and rely
on static type information to construct the program graph. Wang et al. (2017) use GNNs to encode
mathematical formulas for premise selection in automated theorem proving. The way we encode
types has some similarity to how they encode quantified formulas, but while their focus is on higher-
order formulas, our problem requires encoding object types. Veličković et al. (2018) are the first to
use an attention mechanism in GNNs. While they use attention to compute node embeddings from
messages, we use attention to compute certain messages from node embeddings.

Predicting from an Open Vocabulary. Predicting unseen labels at test time poses a challenge
for traditional machine learning methods. For computer vision applications, solutions might involve
looking at object attributes (Farhadi et al., 2017) or label similarity Wang et al. (2018); for natu-
ral language, similar techniques are applied to generalize across semantic properties of utterances
(Dauphin et al., 2013), entities (Eshel et al., 2017), or labels (Ren et al., 2016). Formally, most of
these approaches compare an embedding of an input to some embedding of the label; what makes
our approach a pointer network (Vinyals et al., 2015) is that our type encodings are derived during
the forward pass on the input, similar to unknown words for machine translation (Gulcehre et al.,
2016).

7 CONCLUSIONS

We have presented LAMBDANET, a neural architecture for type inference that combines the strength
of explicit program analysis with graph neural networks. LAMBDANET not only outperforms other
state-of-the-art tools when predicting library types, but can also effectively predict user-defined types
that have not been encountered during training. Our ablation studies demonstrate the usefulness of
our proposed logical and contextual hyperedges.

For future work, there are several potential improvements and extensions to our current system. One
limitation of our current architecture is the simplified treatment of function types and generic types
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(i.e., collapsing them into their non-generic counterparts). Extending the prediction space to also
include structured types would allow us to make full use of the rich type systems many modern
languages such as TypeScript provide. Another important direction is to enforce hard constraints
during inference such that the resulting type assignments are guaranteed to be consistent.
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