Maruth Goyal

(512)-971-6794 | maruth@cs.utexas.edu

EDUCATION

The University of Texas at Austin

Austin, TX

Bachelor of Science in Computer Science, Turing Scholars Honors GPA: 3.88/4.00

Aug. 2018 - May 2022

Bachelor of Science in Mathematics GPA: 3.81/4.00

Aug. 2018 - May 2022

Cumulative GPA: 3.82/4.00

Coursework: (i) Cryptography[†] (ii) Distributed Systems[†] (iii) Foundations of Machine Learning and Data Science[†] (iv) Automated Logical Reasoning[†] (v) Theory of Computation[†] (vi) Quantum Information Science^{*} (vii) Virtualization (viii) Operating Systems^{*} (ix) Computer Architecture^{*} (x) Theory of Computation (xi) Algorithms and Complexity (xii) Data Structures^{*} (xiii) Discrete Mathematics^{*} (xiv) Topology (xv) Category Theory (xvi) Algebraic Structures (xvii) Linear Algebra^{*} (xviii) Differential Equations^{*} (xix) Vector Calculus^{*} (xx) Probability † Graduate Level, * Honors

AWARDS

Undergraduate Research Fellowship, UT Austin

Albert A. Bennett Linear Algebra Competition, 2nd place

Ajit Ramchandani Endowed Presidential Scholarship

University Honors

2020

2019

2018

Fall 2018-2020, Spring 2019-2020

EXPERIENCE

Undergraduate Research Assistant

September 2021 – Present

The University of Texas at Austin

Austin, TX

- Working with Prof. Aditya Akella on precise data-driven query planning.
- Extending prior work on picking query physical plan on-the-fly based on properties of intermediate data.
- Developing an optimizer to pick best strategy to picking plan on-the-fly by looking at strategy which examines properties most relevant to data and query
- Developing abstractions to incorporate code-generation while still planning on-the-fly
- Developing a program synthesizer to synthesize better strategies by examining past queries, data, and plan choices.

Software Engineering Intern

May 2021 – July 2021

Stripe, Inc.

San Fransisco, CA

- Worked on the Financial Automation team. Developed an app using Apache Spark to classify transactions based on a set of rules provided by accounting.
- Optimized implementation to get a 3x speedup by rewriting filters as joins, judicious caching, and other tricks to optimize Spark SQL query plan.
- Additionally delivered a dashboard that visualized data-quality metrics for transaction data ingested by the Financial Automation
- Dashboard helps engineers and management detect and diagnose any issues with data quality as soon as possible

Undergraduate Research Assistant

May 2020 - May 2021

The University of Texas at Austin

Austin, TX

- Lead team of 5 people with Prof. Isil Dillig on optimization of smart contracts on the blockchain; automatically refactoring data layout to minimize "gas" usage.
- Developed procedure to efficiently generate search space of candidate programs, novel synthesis algorithm, and static analyses for aggressive reduction of the search space.
- Developed a novel synthesis algorithm that exploited symmetry to drastically reduce the search space.
- 15k+ LoC in Java, Kotlin, Solidity, Bash. Used Gradle for building, CheckStyle, SpotBugs, Docker for ensuring standards with collaborators, and JUnit 5 with a CI pipeline for correctness.
- Submitted to OOPSLA 2022.

Undergraduate Teaching Assistant

Aug 2019 - Dec 2019, Aug 2020 - Dec 2020

The University of Texas at Austin

Austin, TX

- Led weekly discussion sections, graded problem sets, and exams for CS311H: Honors Discrete Mathematics with Prof. Isil Dillig.
- Developed a curriculum and series of assignments for an introduction to machine-checked mathematical proofs in the Coq language.
- Developed a programming assignment for students with the goal of cracking the Vigenere cipher as an application of math learned in class to Computer Science.

Assisted in designing exam questions

Undergraduate Research Assistant

The University of Texas at Austin

Austin, TX

Jan 2019 – Aug 2019

- Worked on using machine learning for static type inference for gradually-typed languages like JavaScript with Prof. Isil Dillig and Prof. Greg Durrett.
- Assisted design of Graph Neural Network model architecture. Identified major sources of error, and helped optimize model to increase performance.
- Implemented internal translations from TypeScript to a Scala DSL, and helped setup and run experiments.
- Published at ICLR 2020

Publications

- Maruth Goyal, James Dong, Yanju Chen, Yuepeng Wang, Yu Feng, Isil Dillig, Synthesis-Powered Optimization of Smart Contracts via Data Type Refactoring (in submission)
- Jiayi Wei, Maruth Goyal, Greg Durrett, Isil Dillig, LambdaNet: Probabilistic type inference using graph neural networks. In International Conference on Learning Representations (2020)

PROJECTS

Machine Unlearning Spring 2021

- Surveyed, and setup experiments to evaluate the current state of the art in Machine Unlearning.
- Provided first experimental evaluations for some algorithms, and attempted to compare them to theoretical guarantees.
- Used both toy, and real world data in order to evaluate and understand the settings in which different algorithms worked.
- Found certain algorithms to not be as useful in practice due combinations of poor performance, or extreme time and memory requirements.
- Implemented a general framework-agnostic set of abstractions and interfaces to make any ML model amenable to machine unlearning.

Survey on Karp-Lipton Style Theorems

Spring 2020

- Wrote a survey on the use of theorems in the style of the Karp-Lipton theorem , connecting lower bounds for non-uniform models of computation with bounds for uniform models
- Explored the original result of Karp and Lipton, the super-polynomial lower bound on Σ_2 by Ravi Kannan, and the lower bound for PP by Vinodachandran, among others.
- Further explored Quantum equivalents of Karp-Lipton style theorems with Aaronson's result showing $PP \subseteq BQP/poly \implies CH = MA$
- \bullet Also investigated recent result of Chen, McKay, Murray, and Williams showing an equivalence between Karp-Lipton style collapses and superpolynomial lower bounds for P^NP
- Finally, explored these collapses in the context of the Algebraization proof barrier introduced by Aaronson and Wigderson.

Transactional Memory for OS | C++, x86

Fall 2019

- Implemented support for Intel TSX Hardware Transactional Memory at kernel level.
- Allowed for same critical region to be protected simultaneously by transactions and SpinLocks.
- Based on Rossbach et al. SOSP 2007
- Automatically falls back to SpinLocks in event of I/O, or irrecoverable transaction aborts.

Static Type Inference | Haskell

Spring 2019

- Implemented constraint-unification based Hindley-Milner inference for a simply typed λ -calculus.
- Supported let-in, if-else, λ functions, function calls, recursion, arithmetic.

TECHNICAL SKILLS

Languages: Java, Python, C++, C, Kotlin, Scala

Frameworks: Flask, PyTorch, NumPy

Developer Tools: Git, Docker, TravisCI, Gradle